WRKY transcription factors are known mostly for their function in plant defense, abiotic stress responses, senescence, seed germination, and development of the pollen, embryo, and seed. Here, we report the regulatory functions of two WRKY proteins in photomorphogenesis and expression. PIF4 is a critical signaling hub in light, temperature, and hormonal signaling pathways. Either its expression or its accumulation peaks in the morning and afternoon. WRKY2 and WRKY10 form heterodimers and recognize their target site in the promoter near the MYB element that is bound by CCA1 and LHY under red and blue light. WRKY2 and WRKY10 interact directly with CCA1/LHY to enhance their targeting but interact indirectly with ... More
WRKY transcription factors are known mostly for their function in plant defense, abiotic stress responses, senescence, seed germination, and development of the pollen, embryo, and seed. Here, we report the regulatory functions of two WRKY proteins in photomorphogenesis and expression. PIF4 is a critical signaling hub in light, temperature, and hormonal signaling pathways. Either its expression or its accumulation peaks in the morning and afternoon. WRKY2 and WRKY10 form heterodimers and recognize their target site in the promoter near the MYB element that is bound by CCA1 and LHY under red and blue light. WRKY2 and WRKY10 interact directly with CCA1/LHY to enhance their targeting but interact indirectly with SHB1. The two WRKY proteins also interact with phyB, and their interaction enhances the targeting of CCA1 and LHY to the promoter. SHB1 associates with the and loci and enhances their expression in parallel with the expression peaks. This forward regulatory loop further sustains the accumulation of the two WRKY proteins and the targeting of CCA1/LHY to the locus. In summary, interactions of two WRKY proteins with CCA1/LHY and phyB maintain an optimal expression level of toward noon and afternoon, which is essential to sketch the circadian pattern of expression.